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We investigate approximation methods for systems of molecules interacting by 
core repulsion and highly directional attraction due to several attraction sites. 
The force model chosen imitates a chemical bond by providing for bond 
saturation when binding occurs. The dense fluid is an equilibrium mixture of 
s-mers with mutual repulsion. We use a previously derived reformulation of 
statistical thermodynamics, in which the particle species are monomeric units 
with a specified set of attraction sites bonded. Thermodynamic perturbation 
theory (TPT) and integral equations of two types are derived. The use of TPT is 
illustrated by explicit calculation for a molecular model with two attraction 
sites, capable of forming chain and ring polymers. Successes and defects of TPT 
are discussed. The integral equations for pair correlations between particles of 
specified bonding include calculation of self-consistent densities of species. 
Methods of calculating thermodynamic properties from the solutions of integral 
equations are given. 

KEY WORDS: Highly directional forces; chemical bond; polymerization; 
thermodynamic perturbation theory; pair correlations; integral equations. 

1. I N T R O D U C T I O N  

In the preceding paper, (1) referred to in the text as III, we developed a 
comprehensive reformulation of the statistical thermodynamics of 
associating systems consisting of molecules with several attraction sites. 
Here we address the problem of making suitable approximations in order 
to arrive at tractable methods of computation. 

The initial approximations are closely tied to the types of steric incom- 
patibility (SI) discussed in detail in Section 4 of III. The types of SI named 
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SI1 and SI2W in III, when taken together, model the saturation of a 
chemical bond. When site A(1) in molecule 1 is bonded to site B(2) in 
molecule 2, then SI1 prohibits bonding of either site to a site of a third 
molecule; SI2W prohibits the bonding of either site to an additional site of 
the bonding partner molecule. This physical SI is incorporated into the 
representation in terms of graphs by the single bonding condition: 

Each attraction site of a hyperpoint is either unbonded, or bonded to 
a single site of another hyperpoint. 

This condition is imposed in all the following approximation schemes. 
For pairs of molecules, a stronger type of SI is SI2S, which forbids 

double bonds between molecules. It is realized for hard sphere molecules 
with two sites of very short-ranged attraction, separated by a reasonable 
bond angle, as shown in Fig. 3 of lII. In this case it is certainly advan- 
tageous to build in the prohibition of double bonds from the start. On the 
other hand, four tetrahedrally arranged sites of attraction of moderate 
range may allow double-bond formation. The formalism we develop is suf- 
ficiently general to accommodate either the possibility of multiple bonding 
or the a priori restriction to single bonding. 

SI3 occurs to a degree which is highly dependent on the amount of 
steric self-hindrance of extended s-meric structures formed by association. 
It is substantial for rigid structures, which exhibit little self-hindrance, but 
becomes much less pronounced for flexible, kinked chains with free 
rotation around bonds. The problem of systematic exploitation of SI3 is a 
difficult one; it is not addressed here. 

The types of SI may be regarded as a sequence of successively stronger 
steric constraints. Our approach is motivated by the belief that it is highly 
desirable to define as clearly as possible the approximation in terms of 
graph neglect called for by each level of SI, before proceeding to the next 
level. Here this program is carried out for the first two types of SI. 

For definitions and notation, reference to III may be made. Many of 
the results presented here are closely related to earlier papers, (2'3) referred 
to as ! and II, concerned with dimerizing systems. 

2. B O N D I N G  B E T W E E N  PAIRS 

Any consideration of approximation schemes must begin with the 
possible states of bonding between pairs of molecules. The unrestricted set 
of possible bondings is contained in (6) of III. The primary condition to be 
imposed is the single-bonding restriction. The algebra of site operators, 
introduced in III, provides a neat way of doing just that. We define an 
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operator )~(12), which represents a sum over site-site bonds weighted by 
site operators: 

.?(12)= ~ ~ f~B(12)e~(1)e~(2) (1) 
A ~ F B E F  

Then all possible conditions of attraction bonding between 1 and 2, 
weighted by site operators for bonded sites, are given by 

exp[~(12)] (2) 

Here multiple bonding of sites is forbidden, but multiple bonds between 
hyperpoints are allowed. 

If multiple bonding between hyperpoints is to be excluded, we could 
proceed by replacing exp[J~(12)] by 1 + jr It is often more convenient 
to modify (1) by writing 

f~(12)= ~ ~ fAs(12)eA(1)ee(2)e(12) (3) 
A ~ F B ~ F  

Here e(12) is an operator which commutes with all site operators and all 
e(•) if the pair i, j is not 1, 2. Furthermore it satisfies 

e2(12)=0 (4) 

The advantage is that the weighted sum of all bonding conditions is still 
given by (2), so that calculations using this form cover both cases. We must 
then add the convention that integration over 1 and/or 2 implies taking the 
sum of the term independent of ~(12) and the coefficient of e(12) of the 
term linear in e(12). 

The use of the operator form (2) to represent the attraction bonding 
between pairs automatically propagates the prohibition against double 
bonding of sites as J~(12) is composed with other functions in perturbation 
theory or integral equations. 

3. T H E R M O D Y N A M I C  P E R T U R B A T I O N  T H E O R Y  

Thermodynamic perturbation theory (TPT) and certain integral 
equation methods are based on the calculation of the excess Helmholtz free 
energy A over a reference system at the same temperature T and singlet 
density p(1) as the real system. The reference system is assumed to be 
known to the extent of A R and the pair distribution function gR(12). Here 
the reference system is chosen to consist of molecules which interact only 
with the repulsive potential ~R(12), with corresponding Mayer f-function 
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fR(12). By subtracting from (39) of III the corresponding equation for the 
reference system, we obtain 

fl(A-AR)=f[ar(1)lna-~+a~ ' ar(1)+Q(1)ld(1)-c(~ 1 (5) 

Here Q(1) is a0(1) times a certain multilinear function of the d~(1)= 
a~(1)/ao(1 ). The explicit form of Q(1) is given in (40) of III. 

The graphs devoid of attraction bonds in c (~ are exactly c~ ). TPT 
retains only graphs with attraction bonding between a single pair of points. 
The sum of these graphs is given in terms of gR(12) by 

c(~189 gR(12)(ff(1)[e .?~2~- 1] ff(2))l, 2 d(1) d(2) (6) 

For the ca(I) with ~ ~ 5  the approximation (6) implies 

((1) - co(l) = ~ gR(12)( [e ?~'2~ - 1 ] d(2))2 d(2) 
d 

(7) 

Since gR(12)> 0 and all site-site potentials satisfy ~AB(12)>~0 all the c~(1) 
are non-negative. 

Some of the striking aspects of TPT are best seen by specializing to the 
case of greatest interest, exclusion of double bonds. The easiest way to do 
this is the replacement 

exp[J~(12)] - 1 ~ j~(12) (8) 

in (6) and (7). Because of the reduction to a single attraction bond, the 
only a's contained in the TPT expression for c (~  c ~  are the ar~ A. As a 
result we have 

c~(1)=0 for n(c0 ~> 2 (9) 

where n(c0 is the number of sites in the set c~. This does not cause any of the 
p~(1) or a~(1) to vanish. It does enforce the following product properties: 

p~(1)=po(1) ] ]  CA(I) for c~:~ (10) 

pO(1)P~(1)=A[J~pA(1)p0(1) for c ~ e ~  (11) 

It is easy to show, using site operators, that this implies a similar product 
property for the ~(1) :  

~ ( 1 ) =  17 5x(1) for ~ # ~  (12) 
A ~  
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The presence of density parameters p~(1) for all bonding conditions assures 
us that TPT is successful in reproducing the phenomenon of 
polymerization. To see the s-meric structures in graphical form it is 
necessary to consider z-graphs. As each a~(i), i =  1 or 2, is reexpressed in 
terms of z-graphs, the c-graphs with a single attraction bond produce 
z-graphs containing all possible trees of hyperpoints connected by attrac- 
tion bonds. To the extent of reproducing the formation of an infinite set of 
polymeric structures, the simple TPT is successful. 

The set of all z-graphs produced may be characterized, in the ter- 
minology adopted in III, as consisting of trees composed of bare s-mer 
trees, monomer points, and fR-bonds. The fR-bonds represent the effect of 
repulsion between pairs of s-reefs. Since only a rather deficient subset of 
graphs is included, it is difficult to guess to what extent the inter-s-mer 
repulsion is accounted for correctly. 

Two serious deficiencies of TPT are also evident. First, the only 
s-meric structures included are trees. Thus TPT is necessarily inadequate 
whenever structures containing closed loops of attraction bonding are 
important. Secondly, the absence of internal fR-bonds in the s-mer trees 
amount to total neglect of steric self-hindrance of s-reefs. Such effects are 
critically dependent on bond angles. In contrast, TPT yields universal 
answers, independent of the bond angle. 

We illustrate the use of TPT for a simple model. The molecules have a 
spherical hard core, and two attraction sites, A and B. The vectors from the 
center of the core to the sites form a bond angle 0. The range of attraction 
is short enough so that the single-bonding condition is satisfied. These 
molecules can form chain and ring polymers. The minimum number of 
links necessary to form a ring is strongly dependent on the bond angle. 

We specialize to the case where A and B are distinct types of sites, 
with 

~AA = O, ~BB = 0 (13) 

However, the case of two identical sites is quite similar. From (40) of III 
we obtain the explicit expression for Q(1): 

Q(1) = -ryA(1 ) - ere(l) + erA(1 ) r (14) 

and we have 

c(~ f gR(12)fAB(12) 0-8(1) aA(2) d(1) d(2) (15) 
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By differentiation we obtain for the ca(l) 

C a ( 1 ) = I a A ,  CB(1) = I(TB, CAB(l)=0 

gR(12) faB(12) d(2) I =  

( 1 6 )  

(17) 

When (16) is inserted in the subsidiary conditions, given by (11) and (12) 
of III,  we obtain, after dropping the ubiquitous explicit argument 1, 

(TB- (To = (To(TBL (TA-- (T0 = (To(Ta / , (TaBao = (TA (T B (18) 

The first two relations imply the equality (TA = (TB, which obviously must 
hold on physical grounds. In the following we replace both by the 
symbol (TG. 

Since the density parameters Po, Pa, PB, and PAB represent densities 
for monomers,  chain ends, and interior beads of a chain, we can calculate 
two measures of the degree of polymerization. Each one is the mean num- 
ber of beads in a chain of molecules linked by attraction bonds. We define 
~7 to be the mean over chains of two or more links, while v is the mean over 
all chains including monomers.  These definitions imply 

PAB+2Pc (TaB-(To 
t / -  - - -  (19) 

PG (TG - -  Oo 

t0 (TAB 
v . . . .  (20) 

Pa + Po aG 

The difference between them is given by 

(To((TaB- (TG) 
t / - v -  (21) 

(TG((TG -- (To) 

so that we have, by use of the equilibrium conditions (18), the nontrivial 
result 

~ / -  v = 1 ( 2 2 )  

We can now express the thermodynamics in terms of v, which satisfies 

v = aAB/(TC = (TG/aO (23) 

The equilibrium conditions (18) imply the following for the degree of 
polymerization in terms of the number density /~ and the T-dependent 
integral I: 

v = �89 + (�88 + fiI) 1/2 (24) 
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which goes to 1 as I goes to 0 in the high T limit. With decreasing T, v 
increases as I 1/2. For the excess Helmholtz free energy over the reference 
system one finds 

/~ (A-AR)=  1 - v - ~ - 2 1 n v  (25) 

A test of the range of validity of this simple expression must await com- 
puter simulation of such polymerizing systems. One would expect the 
approximation to be at its best for stiff chains with bond angle re, where the 
neglect of rings and self-hindrance is not serious. 

4. SELF-CONSISTENT DENSITIES 

While TPT provides quick estimates of thermodynamic properties, it 
conveys little structural information. To obtain the latter in the form of 
correlation functions between molecules of specified bonding, it is necessary 
to go to integral equation theories. Since integral equations contain all the 
densities p~ in the form of the as, it is necessary to calculate all these den- 
sities in a self-consistent manner. Since the singlet density p(1)= a t ( l )  is 
imposed in the calculation, this amounts to calculating all but one of the 
c~(1) self-consistently. The condition which allows us to do this is the single 
bonding condition. Once it is imposed, we can find exact relations for the 
c~(1) with ~ r ~3 in terms of pair correlations. 

We consider c~(1) as a sum of irreducible graphs, with field hyper- 
points i carrying factors of ac  v(i), where 7 is the set of bonded sites at i. 
Between pairs of points i, j we may have no bond, a bondfR(0"), or eR(ij) in 
parallel with attraction bonds of typefco( i j ) .  If SI2S holds, then the limit is 
one attraction bond between pairs. 

For any graph in ca(l), we select an arbitrary bonded site A ~c~ at 1, 
and trace the unique bond incident on A(1) to its partner site, which we 
call B(2). Let 7 be the set of bonded sites at 2. We make 2 a labeled point 
and drop the factor ac_~(2). We compare the graphs obained in this way 
With the graphs in c~(12). The latter graph sum is obtained from ca(l) by 
making any point for which 7 is the set of bonded sites a labeled point 2, 
and then dropping the factor at_v(2). 

We conclude that we have obtained the subset of graphs in c~7(12) 
such that there is a direct bond fAe(12) with A specified and B satisfying 
BeT. 

Since/~(12) and ~(12) satisfy an equation of Ornstein Zernike type, it 
follows that c~(12)is the sum of all irreducible graphs in h~(12). Further- 
more, all graphs in h~v(12 ) which contain a direct bond from 1 to 2 are 
necessarily irreducible. It follows that our set of graphs is also equal to 

The subset of graphs in g~v(12)=h~v(12 ) which contain fAB(12), with 
A specified and B e 7. 
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In order to obtain a more useful characterization, it is necessary to 
inquire what is obtained when the bond fAB(12) is deleted. This requires an 
analysis of ~(12) analogous to g(12)=e(12)y(12) in the one-density 
theory. We define the operator analog of y(12) by 

)~(12) = 1 + (all connected graphs with two labeled points 

and no direct bond from 1 to 2) (26) 

Then ~a(12) =/~(12) + 1 is given by 

~(12) = 3)(12) eR(12) exp[.~(12)] (27) 

In the case at hand it is actually more convenient to use the following 
explicit representation: 

exp[J~(12)] = IF] I~ [1 +fcD(12)  ec(1) eo(2) g(12)] (28) 
C ~ F D c F  

g(12) = {](12) if SI2S applies otherwise (29) 

If the factor fAe(12) is present, then the site operators kill all factors with 
indices containing A(1) or B(2). If SI2S holds, then e(12) kills all other f 
factors. Therefore, the subset of graphs in g~(12) containing the bond 
fAB(12) is fAe(12)times 

{Y~ -A,y e(12) eR(12) ifSI2S holds 
(30) 

g~ - ~,~ - e( 12 ) otherwise 

Therefore, the result for ca(l) is 

c~(1)= ~ ~ fq~ A,~_~(12)fAB(12)OV_y(2)d(2) (31) 
y c I "  B~ y  
.e,a ~ 

q~_ a#_B(12 ) = {y~_ a#_B(12) eR(12) if SI2S holds (32) 
g~- a.~- 8(12) otherwise 

We can rewrite this more compactly in a notation that will be useful later. 
We retain the bonding index for 1, but use sum over bondings, weighted by 
site operators for 2. Both cases are included in 

c~(1) = f ( ~  a(12)J~A(12) e(2))2  d(2) (33) 

because the implied operator e(12) included in jCA(12) in the case of SI2S 
kills all terms in ~ A(12) with direct bonds. 

Expressions of this type hold for any of the sites A E c~. 
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5. I N T E G R A L  E Q U A T I O N S  

The derivation of integral equations is a rather straightforward 
generalization of the treatment of dimerizing systems given in II. The com- 
plexity of the required equations in component form is swept away by the 
use of site operator notation. The starting point is the generalized 
Ornstein Zernike equation 

/~(12) = 0(12) + f 03(13) ~(3)/~(32))3 d(3) (34) 

We anticipate the fact that the calculation of thermodynamic properties 
involves certain integrals over/~(12) and/or 0(12). We define L, K, J, and S 
by 

L= ~ Ln/2n (35) 
n ~ 2  

L~=f (d(1)O(12)d(2)'"O(nl))m...nd(1)"'d(n) (36) 

K= f (4(1) 4(2) 0012)/~(12)51, 2 d(1) d(2) (37) 

J =  �89 f (d(1) 4(2)/~(12)/~(12) }~,2 d(1) d(2) (38) 

S= �89 f (d(1) 0(12) G(2)) l, 2 d(1) d(2) (39) 

We also require the variations of these four integrals. The only nontrivial 
case is 3L, where we use (34). The explicit results are 

6L = �89 f (~(1) d(2) 60(12) ] ~ ( 1 2 ) )  1, 2 d(1) d(2) 

+ �89 1 06~(1) 4(2) 0(12) ]~(12))1, 2 d(1) d(2) (40) 

3K= f 04(1) d(2)[0(12) 3/~(12) + 60(12)/~(12)] )1,2 d(1) d(2) 

+ 2 f (6d(1) d(2) 0(12)/~(12))1,2 d(1) d(2) (41) 

822/42/3-4-16 
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f (8(1) 8(2)/~(12) 6/t(12))1,  2 d(1) d(2) 8J=  

+ f (68(1) 8(2)/~(12)/~(12))~,2 d(1) a(2) (42) 

�89 f {~(1)8(2) 6((12))1, 2 d(1) d(2) 6S= 

+ f (68(1) 6(2) {(12))1,  2 d(1) d(2) (43) 

Reference system values of the integrals L, K, J, and S are indicated by a 
subscript R. They are defined by replacing 8(i), ?(12), and h(12) by p(i), 
cR(12), and hR(12). The angular brackets are then superfluous and are 
therefore omitted. 

In order to produce a closed set of equations, (34) must be combined 
with a second relation between ~(12) and h(12), the so-called closure 
approximation. We consider two types of closures. 

5.1. Integral Equation without Reference System 

When a reference system is not used, then reasonable behavior in the 
high-temperature limit of negligible attraction is not built in. If we choose 
to impose the boundary condition that reasonably good results be obtained 
in the hard core limit, then this dictates a closure that reduces to the Per- 
cus-Yevick (PY) equation (4) in this limit. The analogy to the PY equation 
of the following closure, provisionally named PPY (polymer PY), is totally 
transparent. 

We split the graph sum )~(12) into reducible and irreducible graphs by 

~(12) = ~(12) - ~(12) + 2(12) (44) 

where 2(12) contains all the irreducible graphs, and g(12)-~(12) all the 
reducible ones. The PPY approximation, 

2 (12)=0  (45) 

turns 

~(12)= ~(12)-~(12) (46) 

combined with (27) into a closure. 
The universal operator form of the PPY equation leads to different 

expressions in component form, depending on whether or not SI2S holds. 
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If it does, then J~(12) contains the operator e(12), which is then introduced 
into ~(12) and ~(12) via (27). Our present concern, however, is not analysis 
of specific situations, but derivation of a general result for the pressure, 
consistent with the PPY closure. To this end we require the result of taking 
a variation of the closure, holding T and all potentials constant. After 
elimination of ~(12) between (27) and (46), the relation between ~(12) and 
~(12) is linear. As a consequence, we obtain after weighting with d(1) and 
8(2) 

(8(1)  d(2)[~(12) 6g(12) - 6~(12) 8(12)] >1,2 = 0 (47) 

From the variation of flpV as expressed in (33) of III we obtain 

VS(flp)-~N=(SIc(~ f < g ( 1 ) 8 ( 1 ) > d ( 1 ) ]  (48) 

where N =  ~ p(1) d(1) is the mean number of molecules in the system. We 
consider a variation in which the f-functions are held constant. Then the 
only variations in c (~ and 8(1) are due to variations in the o's. In view of 
(15) and (47) of III we then have 

6[c(~ <8(l)d(1))d(1)]=-f <d(1)g(12)~d(2))~,2d(1)d(2 ) (49) 

We now verify that the following expression is consistent with the PPY 
closure: 

f <8(1) 8(1)> d(1) = �89  2L--  S (50) c(O)_ 

The variation of the left-hand side of (50) is calculated in (49). The 
variation of the right-hand side is obtained from (40), (41), and (43): 

g [ � 89  2L - S]  

= - f  <8(1) 8(12) 38(2)71,2 d(1) d(2) 

+ � 8 9  {8(1 ) 8(2)[~(12) 8/~(12) - ~(t2) 68(12)] >~,2 d(1) d(2 ) (51) 

For variations at constant f-functions, the second term on the right-hand 
side vanishes by virtue of (47), the variation of the closure. The first term 
agrees with the right-hand side of (49). Hence, (50) is established by 
integration over the variation from p = 0 to the actual density, once it is 
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verified that the two sides of (50) agree in the low-density limit. By taking 
the leading graphs of the expansion in d- of the two sides we find 

p = 0  

= lim (�89 2L - S) 
p--O 

= -�89 lira f @(1)[fR(12) + eR(12) e ,?~121] d(2))1.2 d(1) d(2) (52) 
p = 0  

This establishes the result for the PPY equation, 

~pV=N+�89  2I~-�89 (531 

It is noteworthy that the quantity for which a closure-consistent expression 
could be obtained in terms of ~(12) and h(12) is the left-hand side of (50), 
rather than c (~ itself. As a consequence, g(1) does not appear explicitly, 
and the question of what to use for ~(1) was bypassed entirely in finding an 
expression for the pressure. It seems reasonable that the exact expression 
(33) should be used. As will appear shortly, the situation is quite different 
for integral equations of hypernetted chain type. 

5.2. Integral Equation with Reference System 

The reference system that suggests itself is the same one used in TPT: 
the system interacting only with the repulsive forces represented by fR(12). 
It is assumed that the pair distribution function gR(12) of the reference 
system is known. From this the direct correlation function cR(12) can be 
calculated. 

With the use of a reference system, the behavior in the purely repulsive 
limit is no loger an issue, and the graph sum of HNC (hypernetted chain) 
type is attractive for two reasons. The HNC equation (5 lo~ has rather good 
internal thermodynamic consistency and allows the definition of a 
Helmholtz free energy A in terms of its solution. Furthermore the HNC 
equation and equations related to it have proved successful in dealing with 
forces that are purely attractive or attractive in the mean. 

Once operator notation is introduced, it becomes easy to generalize 
the procedure used in II for a single attraction site to the closure suggested 
here, the PXHNC (polymer excess HNC) closure. It is formulated in terms 
of the graphs ~(12), characterized by 

~(12)=all connected graphs without direct (12)-bond which remain 
connected when all connections at 1 and 2 are broken. There is 
at least one attraction bond. 
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The relation between ~(12) and 33(12) is 

, 33(12) 
i(12) = m - -  (54) 

yR(12) 

An exact expression for the component functions g~.e(12) in operator form 
is 

~(12) = g,(12)  exp[~(12) + J~(12)] (55) 

This holds, whether or not SI2S prevails. If it does, then f (12)  contains the 
operator e(12). 

The graphs in ~(12) can be split into reducible and irreducible graphs 
by 

~(12) =/~(12) - 0(12) +/~(12) - [hR(12)--cR(12)+ER(12)I (56) 

where /~(12)--ER(12) is the sum of all the irreducible graphs. The 
approximation of HNC  type is 

/~(12)-  ER(12 ) = 0  (57) 

After inserting (57) in (56), and using the logarithm of (55) to eliminate 
~(12), we have the PXHNC closure, 

~(12) =/~(12) _ ((12) + j~(12)_ hR(12) + cR(12) (58) In gR(12 ) 

If SI2S prevails, then the presence of J'(12) introduces the operator e(12) 
into direct attraction bonds in 0(12) and ~(12). As in the case of PPY, the 
component form of the closure will look quite different from the case where 
SI2S is not imposed. 

The calculation of A - A e compels us to consider variations in which 
the reference system is held constant. Applying this to (58) yields 

/~(12) 3/~(12) - d ( 1 2 ) [ 6 ~ ( 1 2 ) -  aJ'(12)] = 0 (59) 

The calculation of an expression for f l (A -AR)  starts with (5). The only 
terms for which expressions have to be found are the nonexplicit graphical 
terms - c  {~ + c~). In the variation due to turning on a~(12) from J ' (12)= 0 
to the actual values, all the r with the exception of Cr = p change. The 
constancy of the reference system implies that p and fi are held constant. 
For the variation of c (~ we obtain the exact result 

�89 f (~(1) ~(12) aJ~(12) ~(2)) , ,  2 a(1) d(2) bdo) = 

+ f (~(1) 6~(1)) d(1) (60) 
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The expression which fulfills (60) within the PXHNC approximation is 

c(~ c~ ) = - � 8 9  JR) + (L - LR) + ( S -  SR) (61) 

It is clear that both sides become zero when the attractive interactions are 
turned off. Therefore it is necessary only to compare the variation of the 
right-hand side of (61) with (60). From (40), (42), and (43) we obtain 

6(-�89 L + S) = M 1 q- m 2 (62) 

M~=�89 (d(1)[~(12) 6g(12)-/~(12) 6/~(12)] d(2))1,2 d(1) d(2) (63) 

M2=f (6~(1){~(12)-�89 d(2)>,,2 d( l )d(2)  (64) 

M1 can be transformed using the closure given in (59). The result is 

M1 = �89 f (#(1) ~(12) c5J~(12) #(2))1,2 d(1) d(2) (65) 

which agrees with the first term on the right-hand side of (60). Somewhat 
more complicated manipulations are required for M2. First, it is necessary 
to exhibit a symmetry in part of the integrand in (64). We use the notation 
introduced in (33), retaining the bonding index for 1, but using operator 
sums for the labeled point 2. Then we have by use of (34), 

f ( [ / ~ ( 1 2 ) -  ~(12)]  d(2)/~(21))2 d(2) 

= f  (/~(13) d(3) ~(32) ~(2)/~(21))2,3 d(2) d(3) 

= f (/~(12) ff(2)[-/~(21) - g~(21 )] )2 d(2) (66) 

which indicates that we may interchange the bonding indices of the two 
factors at 1. 

We use the symmetry in the following way. Let p~(12) denote the 
coefficient of 3ar_~(1)~r_y(2)  in the integral (64) for M2. The product 
terms involve partitions of c~ and 7 into two subsets. No rearrangement is 
required for partitions of 7. At the labeled point 1, we select an arbitrary 
bonded site A e ct. For every partition of ~ into two subsets, we assign the 
subset containing A as the bonding index of the t-factor, the complement 
as the bonding index of the h-factor. Since half the original terms had their 
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indices switched, we gain a factor of 2 for the surviving terms. With this 
rearrangement we have 

p~7 (1 2 )= c~(1 2 ) -  ~ ~ t~o~(12)h . . . . .  7 ~(12) (67) 

AEO9 

This may be rewritten in terms of the g's by using 

g~.e(12) = h~(12) + 6~,~.,.,~ 

and eliminating c~(12). This replaces (67) by 

(68) 

p ~ ( 1 2 ) =  g~ , (12) -  ~ ~ to)~(12) g . . . .  ~, ~(12) (69) 
cocc~ ~ y  
A ~ o )  

This is to be compared with g~,(12) as obtained from (27) in component 
form. The subtraction of the double sum in (69) removes from g~(12) all 
those terms for which A(1) is bonded to a field point. Therefore, the 
balance p~.(12) consists of all graphs in go./(12) such that A(1 ) is bonded to 
a site in 2. Using the results of Section 3, we can conclude immediately that 
we have 

fp~,(12) ar ~,(2) d (2 )=%(1)  (70) 
y c F "  

Of course, we could have proceeded algebraically, using (55). Since this is 
an exact relation, we then obtain ca(l) in the form (33). From (70) it 
finally follows that we have 

M 2 = f  (~(1) r id(l))  d(1) (71) 

which completes the proof of (61). 
Thus our final result for the Helmholtz free energy for the PXHNC 

equation is 

f l ( A - A e ) =  [ a r ( 1 ) l n  a~ 

• � 89  JR) -- (L - LR) -- (S - SR) (72) 

It is noteworthy that the closure-consistent expression for A actually 
demanded incorporation of the exact relations (33) for the ca(l). This 
implies that the minimum property of A is preserved in the PXHNC 
approximation. For constant p = ar and all f-functions held fixed, A is 
stationary with respect to variations of the a~ with c~ r F. 
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6. C O N C L U S I O N  

Our aim has not been the production of a catalog of all conceivable 
integral equations or versions of TPT. The types singled out appear 
promising on intuitive grounds, but need to be tested by actual calculation 
for a system that is also simulated by Monte Carlo or molecular dynamics 
in order to have exact results for comparison. 

The examples chosen illustrate the great scope for deriving new 
calculational methods inherent in the multidensity formalism. Much more 
needs to be done; first and foremost, the problem of successful incor- 
poration of SI3 needs to be addressed. Undoubtedly, this will entail even 
more detailed consideration of the geometry of interactions for the physical 
system considered. 

REFERENCES 

1. M. S. Wertheim, J. Star. Phys. 42:459 (1986) (preceding paper). 
2. M. S. Wertheim, J. Star. Phys. 35:19 (1984). 
3. M. S. Wertheim, :7. Stat. Phys. 35:35 (1984). 
4. J. K. Percus and G. J. Yevick, Phys. Rev. 110:1 (1958). 
5. J. M. van Leeuwen, J. Groeneveld, and J. deBoer, Physica 25:792 (1959). 
6. M. S. Green, J. Chem. Phys. 33:1403 (1960). 
7. E. Meeron, J. Math. Phys. 1:192 (1960). 
8. T. Morita and K. Hiroike, Prog. Theor. Phys. 23:1003 (1960). 
9. G. S. Rushbrooke, Physica 26:1425 (1960). 

10. L. Verlet, Nuovo Cimento 18:77 (1960). 


